NOEnet–Use of NOE networks for NMR resonance assignment of proteins with known 3D structure

نویسندگان

  • Dirk Stratmann
  • Carine van Heijenoort
  • Eric Guittet
چکیده

MOTIVATION A prerequisite for any protein study by NMR is the assignment of the resonances from the (15)N-(1)H HSQC spectrum to their corresponding atoms of the protein backbone. Usually, this assignment is obtained by analyzing triple resonance NMR experiments. An alternative assignment strategy exploits the information given by an already available 3D structure of the same or a homologous protein. Up to now, the algorithms that have been developed around the structure-based assignment strategy have the important drawbacks that they cannot guarantee a high assignment accuracy near to 100%. RESULTS We propose here a new program, called NOEnet, implementing an efficient complete search algorithm that ensures the correctness of the assignment results. NOEnet exploits the network character of unambiguous NOE constraints to realize an exhaustive search of all matching possibilities of the NOE network onto the structural one. NOEnet has been successfully tested on EIN, a large protein of 28 kDa, using only NOE data. The complete search of NOEnet finds all possible assignments compatible with experimental data that can be defined as an assignment ensemble. We show that multiple assignment possibilities of large NOE networks are restricted to a small spatial assignment range (SAR), so that assignment ensembles, obtained from accessible experimental data, are precise enough to be used for functional proteins studies, like protein-ligand interaction or protein dynamics studies. We believe that NOEnet can become a major tool for the structure-based backbone resonance assignment strategy in NMR. AVAILABILITY The NOEnet program will be available under: http://www.icsn.cnrs-gif.fr/download/nmr.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust structure-based resonance assignment for functional protein studies by NMR

High-throughput functional protein NMR studies, like protein interactions or dynamics, require an automated approach for the assignment of the protein backbone. With the availability of a growing number of protein 3D structures, a new class of automated approaches, called structure-based assignment, has been developed quite recently. Structure-based approaches use primarily NMR input data that ...

متن کامل

The AUDANA algorithm for automated protein 3D structure determination from NMR NOE data

We introduce AUDANA (Automated Database-Assisted NOE Assignment), an algorithm for determining three-dimensional structures of proteins from NMR data that automates the assignment of 3D-NOE spectra, generates distance constraints, and conducts iterative high temperature molecular dynamics and simulated annealing. The protein sequence, chemical shift assignments, and NOE spectra are the only req...

متن کامل

Fast high-resolution protein structure determination by using unassigned NMR data.

NMR spectroscopy provides high-resolution structural information of biomolecules in near-physiological conditions. Although significant improvements were achieved in NMR spectroscopy in the last 20 years, the increase in genome sequencing data has created a need for rapid and efficient methods of NMR-based structure determination. 3] NMR data acquisition can be accelerated significantly when se...

متن کامل

Protein side-chain resonance assignment and NOE assignment using RDC-defined backbones without TOCSY data.

One bottleneck in NMR structure determination lies in the laborious and time-consuming process of side-chain resonance and NOE assignments. Compared to the well-studied backbone resonance assignment problem, automated side-chain resonance and NOE assignments are relatively less explored. Most NOE assignment algorithms require nearly complete side-chain resonance assignments from a series of thr...

متن کامل

Simultaneous NMR assignment of backbone and side chain amides in large proteins with IS-TROSY.

A new strategy for the simultaneous NMR assignment of both backbone and side chain amides in large proteins with isotopomer-selective transverse-relaxation-optimized spectroscopy (IS-TROSY) is reported. The method considers aspects of both the NMR sample preparation and the experimental design. First, the protein is dissolved in a buffer with 50%H2O/50%D2O in order to promote the population of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2009